

SEMITOP[®] 4

IGBT Module

SK50GD12T4T

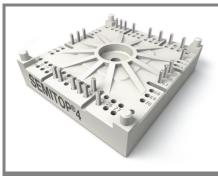
Target Data

Features

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances
 by aluminium oxide substrate
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks


• $V_{CE,sat}$, V_F = chip level value

Absolut	e Maximum Ratings	= 25 °C, unless otherwise	specified	
Symbol	_		Values	Units
IGBT				•
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 175 °C	T _s = 25 °C	75	Α
		T _s = 70 °C	60	А
I _{CRM}	I _{CRM} = 3 x I _{Cnom}		150	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C	10	μs
Inverse	Diode		·	
I _F	T _j = 175 °C	T _s = 25 °C	60	А
		T _s = 70 °C	45	А
I _{FRM}	I _{FRM} = 3 x I _{Fnom}		150	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	265	А
Module			_	
I _{t(RMS)}				А
T _{vj}			-40 +175	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 1,7 mA		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,01	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 150 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		15		mΩ	
		T _j = 150°C		25		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			1,85	2,05	V	
		T _j = 150°C _{chiplev.}		2,25	2,45	V	
C _{ies}				2,77		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,2		nF	
C _{res}				0,16		nF	
Q _G	V _{GE} =-7V+15V			375		nC	
R _{Gint}	T _j = 25 °C			4		Ω	
t _{d(on)}				63		ns	
t _r	$R_{Gon} = 32 \Omega$	V _{CC} = 600V		65		ns	
E _{on}	di/dt = 920 A/µs	I _C = 50A		8,3		mJ	
^L d(off)	$R_{Goff} = 32 \Omega$	$T_{j} = 150 \text{ °C}$		521 80		ns	
t _f E _{off}	di/dt = 920 A/µs	V _{GE} = ±15 V		80 5		ns mJ	
				-		-	
R _{th(j-s)}	per IGBT			0,65		K/W	

GD-T

SEMITOP[®] 4

IGBT Module

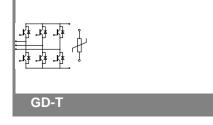
SK50GD12T4T

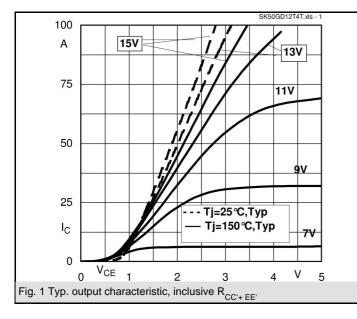
Target Data

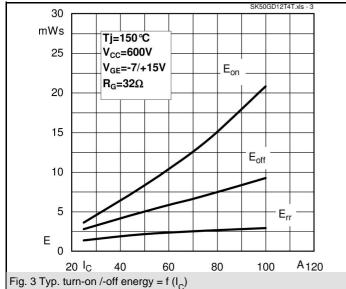
Features

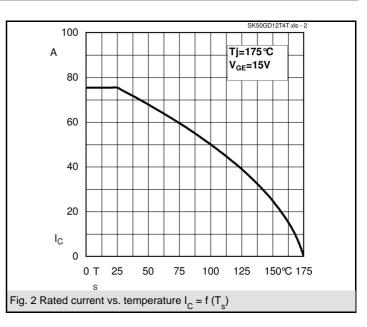
- One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances
 by aluminium oxide substrate
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

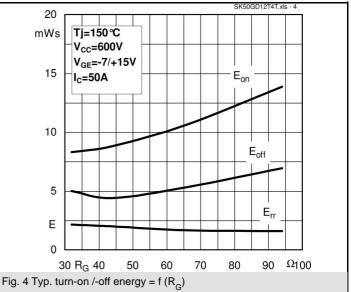
Typical Applications*


Remarks


• V_{CE,sat} , V_F = chip level value


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	iode						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2,2	2,55	V	
		T _j = 150 °C _{chiplev.}		2,18	2,5	V	
V _{F0}		T _j = 25 °C		1,3	1,5	V	
		T _j = 150 °C		0,9	1,1	V	
r _F		T _j = 25 °C		19	21	mΩ	
		T _j = 150 °C		26	28	mΩ	
I _{RRM}	I _F = 50 A	T _j = 150 °C		30		А	
Q _{rr}	di/dt = 920 A/µs			7,2		μC	
E _{rr}	V _{CC} = 600V			2,15		mJ	
$R_{th(j-s)D}$	per diode			0,97		K/W	
M _s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperat	ure sensor						
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

