

# **DATA SHEET**

THIN FILM CHIP RESISTORS
High precision - high stability
RT series
0.01% TO 1%, TCR 5 TO 50
sizes 0201/0402/0603/0805/1206/
1210/2010/2512

**RoHS** compliant



YAGEO Phicomp



#### 2 9

#### SCOPE

This specification describes RT series high precision - high stability chip resistors with lead-free terminations made by thin film process.

#### <u>APPLICATIONS</u>

- Converters
- Printing equipment
- Server board
- Telecom
- Consumer

#### **FEATURES**

- Halogen Free Epoxy
- RoHS compliant
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production

#### ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

#### YAGEO BRAND ordering code

#### **GLOBAL PART NUMBER (PREFERRED)**

### RT XXXX F X X XX XXXX L

(1) (2) (3) (4) (5) (7)

#### (I) SIZE

0201/0402/0603/0805/1206/1210/2010/2512

#### (2) TOLERANCE

 $L = \pm 0.01\%$ 

 $P = \pm 0.02\%$ 

 $W = \pm 0.05\%$ 

 $B = \pm 0.1\%$ 

 $C = \pm 0.25\%$ 

 $D = \pm 0.5\%$ 

 $F = \pm 1\%$ 

#### (3) PACKAGING TYPE

R = Paper/PE taping reel

K = Embossed taping reel

#### (4) TEMPERATURE COEFFICIENT OF RESISTANCE

 $A = 5 ppm/^{\circ}C$ 

 $B = 10 \text{ ppm/}^{\circ}\text{C}$ 

 $C = 15 \text{ ppm/}^{\circ}C$ 

 $D = 25 \text{ ppm/}^{\circ}C$ 

 $E = 50 \text{ ppm/}^{\circ}\text{C}$ 

#### (5) TAPING REEL

07 = 7 inch dia, Reel

10 = 10 inch dia. Reel

13 = 13 inch dia, Reel

#### (6) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

#### (7) DEFAULT CODE

Letter L is system default code for order only (Note)

#### Resistance rule of global part number Resistance code rule Example $IR = I \Omega$ XRXX $IR5 = 1.5 \Omega$ (1 to 974 ()

| (1 to 9./6 Ω)          | $9R76 = 9.76 \Omega$                      |
|------------------------|-------------------------------------------|
| XXRX<br>(10 to 97.6 Ω) | $10R = 10 \Omega$<br>$97R6 = 97.6 \Omega$ |
| XXXR<br>(100 to 976 Ω) | 100R = 100 Ω                              |
| XKXX<br>(1 to 9.76 KΩ) | IK = 1,000 Ω<br>9K76 = 9760 Ω             |
| XMXX<br>(1 to 9.76 MΩ) | IM = 1,000,000 Ω 9M76= 9,760,000 Ω        |

#### **ORDERING EXAMPLE**

The ordering code of a RT0603 chip resistor, TC 50 value 56  $\Omega$ with ±0.5% tolerance, supplied in 7-inch tape reel is: RT0603DRE0756RL.

#### NOTE

- I. All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed

#### **PHYCOMP BRAND** ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products. For matching traditional types with size codes, please refer to "Comparison table of traditional types and sizes".

#### **GLOBAL PART NUMBER (PREFERRED)**

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

#### 12NC CODE

| <b>2390</b> (I)   | <b>X</b> (2)                   | <b>XX</b> (3)                                 | <b>X</b> (4)               | <b>XXXX</b> (5)                                     | <b>L</b><br>(6)           |
|-------------------|--------------------------------|-----------------------------------------------|----------------------------|-----------------------------------------------------|---------------------------|
| START<br>WITH (I) | TCR <sup>(2)</sup><br>(ppm/°C) | PACKING CODE<br>BY SIZE (inch) <sup>(3)</sup> | TOL. <sup>(4)</sup><br>(%) | RESISTANCE<br>RANGE                                 | DEFAULT<br>CODE<br>(NOTE) |
| 2390              | 8 = ±10                        | 0402: 07 = 7" reel                            | 7 = ±1                     | The remaining 4 digits                              | Letter L is               |
|                   | $7 = \pm 15$                   | 47 = 13" reel                                 | $6 = \pm 0.5$              | represent the resistance                            | ,                         |
|                   | $6 = \pm 25$                   | 0603: 04 = 7" reel                            | $5 = \pm 0.25$             | value with the last digit indicating the multiplier |                           |
|                   | $4 = \pm 50$                   | 24 = 10" reel                                 | $4 = \pm 0.1$              | as shown in the table o                             |                           |
|                   |                                | 44 = 13" reel                                 | $3 = \pm 0.05$             | "Last digit of 12NC".                               | (Note)                    |
|                   |                                | 0805: 01 = 7" reel                            |                            | $0402:4.7\Omega \le R \le 240K\Omega$               | !                         |
|                   |                                | 41 = 13" reel                                 |                            | 0603: I $\Omega \le R \le IM\Omega$                 |                           |
|                   |                                | 1206: II = 7" reel                            |                            | 0805: $I\Omega \le R \le I.5 M\Omega$               |                           |
|                   |                                | 51 = 13" reel                                 |                            | 1206: $1\Omega \le R \le 1.5 M\Omega$               |                           |
|                   |                                | 1210: 12 = 7" reel                            |                            | $1210:4.7\Omega \le R \le 1 M\Omega$                |                           |
|                   |                                | 52 = 13" reel                                 |                            | 2010: $4.7\Omega \le R \le 1 M\Omega$               |                           |
|                   |                                | 2010: 15 = 7" reel                            |                            | 2512: $4.7\Omega \le R \le 1 M\Omega$               |                           |
|                   |                                | 2512: 18 = 7" reel                            |                            |                                                     |                           |

| Comparison table of traditional types and sizes |                     |                 |                |  |  |  |  |  |
|-------------------------------------------------|---------------------|-----------------|----------------|--|--|--|--|--|
| <b>TF</b> (I)                                   | <u><b>X</b></u> (2) | <b>X</b> (3)    | <u>X</u> (4)   |  |  |  |  |  |
| START<br>WITH                                   | SIZE<br>CODE        | TCR<br>(ppm/°C) | TOL.<br>(%)    |  |  |  |  |  |
| TF                                              | 3 = 0402            | $4 = \pm 10$    | $0 = \pm 1$    |  |  |  |  |  |
|                                                 | 2 = 0603            | $3 = \pm 15$    | $I = \pm 0.5$  |  |  |  |  |  |
|                                                 | I = 0805            | $I = \pm 25$    | $2 = \pm 0.25$ |  |  |  |  |  |
|                                                 | 0 = 1206            | $2 = \pm 50$    | $3 = \pm 0.1$  |  |  |  |  |  |
|                                                 | 5 = 1210            |                 | $4 = \pm 0.05$ |  |  |  |  |  |
|                                                 | 7 = 2010            |                 |                |  |  |  |  |  |
|                                                 | 6 = 2512            |                 |                |  |  |  |  |  |
| <b>O</b> Exar                                   | nple:               |                 |                |  |  |  |  |  |
| TF321 =                                         | = RT0402. T         | C50. +0.5°      | % tolerance    |  |  |  |  |  |

| Resistance decade (3) | Last digit |
|-----------------------|------------|
| I to 9.76 Ω           | 8          |
| 10 to 97.6 Ω          | 9          |
| 100 to 976 $\Omega$   | 1          |
| I to 9.76 kΩ          | 2          |
| 10 to 97.6 $k\Omega$  | 3          |
| 100 to 976 $k\Omega$  | 4          |
| I to 9.76 $M\Omega$   | 5          |
| 10 to 97.6 M $\Omega$ | 6          |
|                       |            |

Example: 1008 or 108 ΙΩ 33 kΩ 3303 or 333 =

I0 MΩ =

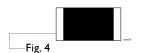
## Exceptions to above packing code definitions:

0805 TC50 with 1%, supplied in 13" reel, the packing code is 02. 0603 TC50 with 1%, supplied in 13" reel, the packing code is 03. 2512 TC15, in 7" reel, the packing code is 35. 2010 TC15, in 7" reel, the packing code is 31.

#### **ORDERING EXAMPLE**

The ordering code of a TF221 resistor, TC50, value 56  $\Omega$  , with  $\pm 0.5\%$ tolerance, supplied in tape of 5,000 units per reel is: 239040465609L or RT0603DRE0756RL.

- 1. All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed




1006 or 106

9

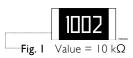
## **MARKING**

#### RT0201 / RT0402 / RESISTANCE VALUE IS NOT IN E-24 / E96 SERIES



No marking

#### RT0603




E-24 series: exception values 10/11/13/15/20/75 of E-24 series, one short bar under marking letter



E-96 series: including values 10/11/13/15/20/75 of E-24 series, 3 digits

#### RT0805 / RT1206 / RT1210 / RT2010 / RT2512



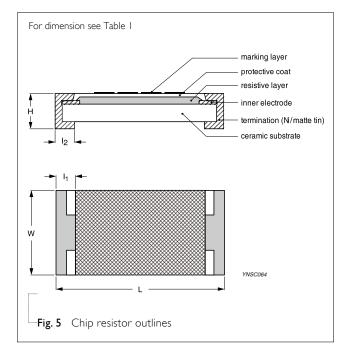
Either resistance in E-24 or E-96: 4 digits

First three digits for significant figure and 4th digit for number of zeros

For further marking information, please see special data sheet "Chip resistors marking".

#### CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive layer. The resistive layer is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the resistance value. Finally, the two external terminations (matte tin) are added. See fig. 5.


#### **DIMENSION**

**Table I** For outlines see fig. 5

| TYPE   | L (mm)     | W (mm)     | H (mm)     | I <sub>I</sub> (mm) | I <sub>2</sub> (mm) |
|--------|------------|------------|------------|---------------------|---------------------|
| RT0201 | 0.60 ±0.03 | 0.30 ±0.03 | 0.23 ±0.03 | 0.10 ±0.05          | 0.15 ±0.05          |
| RT0402 | 1.00 ±0.10 | 0.50 ±0.05 | 0.30 ±0.05 | 0.20 ±0.10          | 0.25 ±0.10          |
| RT0603 | 1.60 ±0.10 | 0.80 ±0.10 | 0.45 ±0.10 | 0.25 ±0.15          | 0.25 ±0.15          |
| RT0805 |            | 1.25 ±0.10 |            |                     |                     |
| RT1206 | 3.10 ±0.10 | 1.60 ±0.10 | 0.55 ±0.10 | 0.45 ±0.20          | 0.40 ±0.20          |

#### RT1210 $3.10 \pm 0.10$ $2.60 \pm 0.15$ $0.55 \pm 0.10$ $0.50 \pm 0.20$ $0.50 \pm 0.20$ RT2010 $5.00 \pm 0.10$ $2.50 \pm 0.15$ $0.55 \pm 0.10$ $0.60 \pm 0.20$ $0.50 \pm 0.20$ RT2512 $6.35 \pm 0.10$ $3.20 \pm 0.15$ $0.55 \pm 0.10$ $0.60 \pm 0.20$ $0.50 \pm 0.20$

#### **OUTLINES**



## **ELECTRICAL CHARACTERISTICS**

| _ | _ |   |    | _ |
|---|---|---|----|---|
|   | a | b | le | 2 |

| Tabl    | e 2                               |                 |                          |        |                                 |                    |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|---------|-----------------------------------|-----------------|--------------------------|--------|---------------------------------|--------------------|-----------|-----------|--------------------|--------------|--------------------|--------------------|----------|------------------|------------------|------------|--------|
| TYPE    | Operating<br>Temperature<br>Range | Power<br>Rating | Max.<br>Work<br>Vol. (1) |        | Dielectric<br>Withstand<br>Vol. | T.C.R.<br>(ppm/°C) |           |           |                    | ance Range ( | `                  | , ,                |          |                  |                  |            |        |
|         | range                             |                 | VOI. (1)                 | ¥ 01.  | VOI.                            |                    | ±0.01%    | ±0.02%    | ±0.05%             | ±0.1%        | ±0.25%             | ±0.5%              | ±1.0%    |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±50                |           |           |                    | 22 ~75K      | 22 ~75K            | 22 ~75K            | 22 ~75K  |                  |                  |            |        |
|         | −55°C                             |                 |                          |        |                                 | ±25                |           |           |                    | 22~75K       | 22~75K             | 22~75K             | 22~75K   |                  |                  |            |        |
| RT0201  | to                                | 1/20W           | 25V                      | 50V    | 50V                             | ±15                |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|         | +125°C                            |                 |                          |        |                                 | ±10                |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±5                 |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±50                | 50.1~12K  | 50.1~12K  | 20~12K             | 4.7~240K     |                    | 4.7~240K           |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±25                | 50.1~12K  | 50.1~12K  | 20~12K             | 4.7~240K     |                    | 4.7~240K           |          |                  |                  |            |        |
| RT0402  |                                   | 1/16W           | 50V                      | 100V   | 75V                             | ±15                | 20~12K    | 20~12K    | 20~12K             | 20~70K       | 20~70K             |                    |          |                  |                  |            |        |
|         |                                   | .,              |                          |        |                                 | ±10                | 20~12K    | 20~12K    | 20~12K             | 20~70K       | 20~70K             |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±5                 | 20~10K    | 20~10K    | 20~10K             | 20~10K       | 20~10K             |                    |          |                  |                  |            |        |
|         | _                                 | -               |                          |        |                                 | ±50                | 50.1~30K  | 50.1~30K  | 4.7~100K           | 1~1M         | 1~1M               | 1~1M               | 1~1M     |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±25                | 50.1~30K  | 50.1~30K  | 4.7~100K           | 1~1M         | 1~1M               | 1~1M               | I~IM     |                  |                  |            |        |
| RT0603  |                                   | 1/10W           | 75V                      | 150V   | 100V                            | ±15                | 50.1~100K | 50.1~100K | 4.7~100K           | 4.7~332K     | 4.7~332K           |                    |          |                  |                  |            |        |
|         | −55°C                             |                 |                          |        |                                 | ±10                |           | 50.1~100K | 4.7~100K           | 4.7~332K     | 4.7~332K           |                    |          |                  |                  |            |        |
|         | - to                              |                 |                          |        |                                 | ±5                 | 20~30K    | 20~30K    | 20~30K             | 20~30K       | 20~30K             |                    |          |                  |                  |            |        |
|         | +155°C                            |                 |                          |        |                                 | ±50                | 50.1~30K  | 50.1~30K  | 4.7~200K           | I~1.5M       | I~1.5M             | I~1.5M             | I~1.5M   |                  |                  |            |        |
|         |                                   |                 |                          |        | 200V                            | ±25                | 50.1~30K  | 50.1~30K  | 4.7~200K           | 1~1.5M       | 1~1.5M             | I~1.5M             | 1~1.5M   |                  |                  |            |        |
| RT0805  |                                   | 1/8W            | 150V                     | 300V   |                                 | ±15                |           | 50.1~200K | 4.7~200K           | 4.7~800K     | 4.7~800K           |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±10                |           | 50.1~200K | 4.7~200K<br>20~50K | 4.7~800K     | 4.7~800K           |                    |          |                  |                  |            |        |
|         | _                                 |                 |                          |        |                                 |                    |           |           |                    | ±5<br>±50    | 20~50K<br>50.1~30K | 20~50K<br>50.1~30K | 5.6~500K | 20~50K<br>I~I.5M | 20~50K<br>I~I.5M | <br> ~ ,5M | I~I.5M |
|         |                                   |                 |                          |        |                                 |                    | ±25       | 50.1~30K  | 50.1~30K           | 5.6~500K     | I~1.5M             | I~1.5M             | 1~1.5M   | I~1.5M           |                  |            |        |
| RT1206  |                                   | 1/4W            | 200V                     | 400\/  | 400V                            | 400\/              | 300V      | ±15       |                    | 50.1~500K    | 5.6~500K           | 5.6~IM             | 5.6~IM   | 1 1,511          | 1 1,511          |            |        |
| 1111200 |                                   | 17 1 🗸 🗸        | 200 V                    | 100 V  | J00 V                           | ±10                |           | 50.1~500K | 5.6~500K           | 5.6~IM       | 5.6~IM             |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±5                 | 20~100K   | 20~100K   | 20~100K            | 20~100K      | 20~100K            |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±50                |           |           | 4.7~IM             | 4.7~IM       | 4.7~1M             | 4.7~IM             | 4.7~IM   |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±25                |           |           | 4.7~1M             | 4.7~1M       | 4.7~ I M           | 4.7~IM             | 4.7~IM   |                  |                  |            |        |
| RT1210  | ı                                 | 1/4W            | 200V                     | 400V   | 400V                            | ±15                |           |           | 100~100k           | 4.7~100k     | 4.7~100k           |                    |          |                  |                  |            |        |
| 2.0     |                                   | 17 1 🗸 🗸        | 200 V                    | 100 V  | 100 V                           |                    |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±10                |           |           | 100~100k           | 4.7~100k     | 4.7~100k           |                    |          |                  |                  |            |        |
|         | _                                 | -               |                          |        |                                 | ±5                 |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±50                |           |           | 4.7~IM             | 4.7~1M       | 4.7~1M             | 4.7~IM             | 4.7~IM   |                  |                  |            |        |
|         | −55°C                             |                 |                          |        |                                 | ±25                |           |           | 4.7~IM             | 4.7~IM       | 4.7~IM             | 4.7~IM             | 4.7~IM   |                  |                  |            |        |
| RT2010  | to                                | 1/2W            | 200V                     | 400V   | 400V                            | ±15                |           |           | 100~100k           | 4.7~100k     | 4.7~100k           |                    |          |                  |                  |            |        |
|         | +125°C                            |                 |                          |        |                                 | ±10                |           |           | 100~100k           | 4.7~100k     | 4.7~100k           |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±5                 |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|         | <del>_</del>                      |                 |                          |        |                                 | ±50                |           |           | 4.7~IM             | 4.7~IM       | 4.7~IM             | 4.7~IM             | 4.7~IM   |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±25                |           |           | 4.7~IM             | 4.7~IM       | 4.7~IM             | 4.7~IM             | 4,7~IM   |                  |                  |            |        |
| RT2512  |                                   | 3/4W            | 2001/                    | 400V   | 400V                            | ±15                |           |           | 100~100k           | 4.7~100k     | 4.7~100k           |                    | 1,7 11 1 |                  |                  |            |        |
| 1112312 |                                   | V V T I C       | 200 V                    | -100 V | 7007                            |                    |           |           |                    |              |                    |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±10                |           |           | 100~100k           | 4.7~100k     | 4.7~100k           |                    |          |                  |                  |            |        |
|         |                                   |                 |                          |        |                                 | ±5                 |           |           |                    |              |                    |                    |          |                  |                  |            |        |

#### NOTE

- 1. The maximum working voltage that may be continuously applied to the resistor element, see "IEC publication 60115-8"
- 2. Value of E-192 series is on request



#### 6 9

#### FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

#### PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

| PACKING STYLE            | REEL<br>DIMENSION | RT0201 | RT0402 | RT0603 | RT0805 | RT1206 | RT1210 | RT2010 | RT2512 |
|--------------------------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Paper/PE taping reel (R) | 7" (178 mm)       | 10,000 | 10,000 | 5,000  | 5,000  | 5,000  | 5,000  |        |        |
|                          | 10" (254 mm)      | 20,000 | 20,000 | 10,000 | 10,000 | 10,000 | 10,000 |        |        |
|                          | 13" (330 mm)      | 50,000 | 50,000 | 20,000 | 20,000 | 20,000 | 20,000 |        |        |
| Embossed taping reel (K) | 7" (178 mm)       |        |        |        |        |        |        | 4,000  | 4,000  |

#### NOTE

1. For Paper/Embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing"

#### **FUNCTIONAL DESCRIPTION**

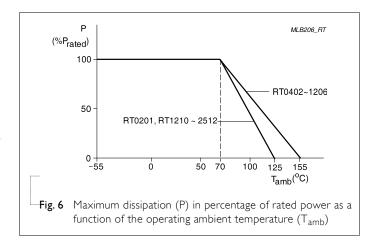
#### **POWER RATING**

Each type rated power at 70°C: RT0201=1/20W, RT0402=1/16W, RT0603=1/10W, RT0805=1/8W, RT1206=1/4W, RT1210=1/4W, RT2010=1/2W, RT2512=3/4W.

#### **RATED VOLTAGE**

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$


or max. working voltage whichever is less

Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value ( $\Omega$ )



## YAGEO Phicomp

#### TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

| TEST METHOD                                   | PROCEDURE                                                                                                                                          | REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MIL-STD-202 Method 304                        | At +25/-55 °C and +25/+125 °C                                                                                                                      | Refer to table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                               | Formula:                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | Where $t_1$ =+25 °C or specified room temperature                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | $t_2$ =-55 °C or +125 °C test temperature                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | R <sub>1</sub> =resistance at reference temperature in ohms                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | R <sub>2</sub> =resistance at test temperature in ohms                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IEC 60115-1 4.25.1<br>MIL-STD-202 Method 108A | At 70±5 °C for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still air required                                                        | ±(0.5%+0.05 Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IEC 60068-2-2                                 | 1000 hours at maximum operating temperature depending on specification, unpowered                                                                  | ±(0.5%+0.05 Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MIL-STD-202 Method 106G                       | Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered | ±(0.5%+0.05 Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | Parts mounted on test-boards, without condensation on parts                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | Measurement at 24±2 hours after test conclusion                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MIL-STD-202 Method 107G                       | -55/+125 °C                                                                                                                                        | $\pm (0.5\% + 0.05~\Omega)$ for 10 K $\Omega$ to 10 M $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | Devices mounted                                                                                                                                    | $\pm (0.5\% + 0.05 \Omega)$ for others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                               | Maximum transfer time is 20 seconds.  Dwell time is 15 minutes. Air – Air                                                                          | ±(0.5/0+0.05 \$2) for others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IEC 60115-1 4.24.2                            | Steady state for 1000 hours at 40 °C / 95% R.H. RCWV applied for 1.5 hours on and 0.5 hour off                                                     | ±(0.5%+0.05 Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | IEC 60115-1 4.25.1 MIL-STD-202 Method 108A  IEC 60068-2-2  MIL-STD-202 Method 106G                                                                 | MIL-STD-202 Method 304  At +25/-55 °C and +25/+125 °C  Formula:  T.C.R = R <sub>2</sub> -R <sub>1</sub> R <sub>1</sub> (t <sub>2</sub> -t <sub>1</sub> ) × 106 (ppm/°C)  Where t <sub>1</sub> =+25 °C or specified room temperature t <sub>2</sub> =-55 °C or +125 °C test temperature R <sub>1</sub> =resistance at reference temperature in ohms R <sub>2</sub> =resistance at test temperature in ohms  At 70±5 °C for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still air required  IEC 60068-2-2  I000 hours at maximum operating temperature depending on specification, unpowered  MIL-STD-202 Method 106G  Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H., without steps 7a & 7b, unpowered  Parts mounted on test-boards, without condensation on parts Measurement at 24±2 hours after test conclusion  MIL-STD-202 Method 107G  -55/+125 °C Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air |

## Chip Resistor Surface Mount RT SERIES 0201 to 2512 (RoHS Compliant)

| TEST                            | TEST METHOD      | PROCEDURE                                                                            | REQUIREMENTS              |
|---------------------------------|------------------|--------------------------------------------------------------------------------------|---------------------------|
| Short Time Overload             | IEC60115-1 4.13  | 2.5 times of rated voltage or maximum                                                | ±(0.5%+0.05 Ω)            |
|                                 |                  | overload voltage whichever is less for 5 sec at room temperature                     | No visible damage         |
| Board Flex/                     | IEC 60115-1 4.33 | Chips mounted on a 90mm glass epoxy resin                                            | ±(0.25%+0.05 Ω)           |
| Bending                         |                  | PCB (FR4)                                                                            | No visible damage         |
|                                 |                  | Bending: see table 6 for each size                                                   |                           |
|                                 |                  | Bending time: 60±5 seconds                                                           |                           |
| Insulation Resistance           | IEC 60115-1 4.6  | Rated continuous overload voltage (RCOV) for 1 minute                                | ≥10 GΩ                    |
|                                 |                  | Details see below table 5                                                            |                           |
| Dielectric Withstand<br>Voltage | IEC 60115-1 4.7  | Maximum voltage (V <sub>rms</sub> ) applied for 1 minute                             | No breakdown or flashover |
| Solderability                   |                  | Electrical Test not required                                                         | Well tinned (≥95%         |
| - Wetting                       | J-STD-002 test B | Magnification 50X                                                                    | covered)                  |
|                                 |                  | SMD conditions:                                                                      | No visible damage         |
|                                 |                  | I <sup>st</sup> step: method B, aging 4 hours at 155°C<br>dry heat                   |                           |
|                                 |                  | 2 <sup>nd</sup> step: leadfree solder bath at 245±3°C<br>Dipping time: 3±0.5 seconds |                           |
| - Leaching                      | J-STD-002 test D | Leadfree solder, 260 °C, 30 seconds immersion time                                   | No visible damage         |
| - Resistance to                 | IEC 60115-1 4.18 | Condition B, no pre-heat of samples.                                                 | ±(0.5%+0.05 Ω)            |
| Soldering Heat                  |                  | Leadfree solder, 260 °C, 10 seconds                                                  | No visible damage         |
|                                 |                  | immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol      |                           |

Table 5 Criteria of rated continued working voltage and overload voltage

| TYPE                                         | RT0201 | RT0402 | RT0603 | RT0805 | RT1206 | RT1210 | RT2010 | RT2512 |
|----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Voltage (DC/unit: V); (AC/ unit: $V_{rms}$ ) | 50     | 100    | 100    | 300    | 500    | 500    | 500    | 500    |

Table 6 Bending for sizes 0201 to 2512

| TYPE               | RT0201 | RT0402 | RT0603 | RT0805 | RT1206 | RT1210 | RT2010 | RT2512 |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Specification (mm) | 5      | 5      | 3      | 3      | 2      | 2      | 2      | 2      |

## Chip Resistor Surface Mount RT SERIES 0201 to 2512 (RoHS Compliant)

#### REVISION HISTORY

| REVISION  | DATE          | CHANGE NOTIFICATION | DESCRIPTION                                                                                                                                                                                      |
|-----------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version 9 | Sep. 12, 2017 | -                   | - Add ±0.02% tol. for 0402 to 1206                                                                                                                                                               |
| Version 8 | May 31, 2017  | -                   | - Add 10" packing                                                                                                                                                                                |
| Version 7 | Jan. 17, 2017 | =                   | - Add ±0.01% tol. for 0402 to 1206                                                                                                                                                               |
| Version 6 | May. 11, 2015 | -                   | - Extend resistor value                                                                                                                                                                          |
| Version 5 | Aug. 22, 2014 | -                   | - Add RT0201                                                                                                                                                                                     |
|           |               |                     | - RT0402/0603/0805/1206: resistance range and operating temperature range updated                                                                                                                |
|           |               |                     | - Fig. 6 updated                                                                                                                                                                                 |
| Version 4 | Oct 21, 2009  | -                   | - Test Items and methods updated                                                                                                                                                                 |
|           |               |                     | - Test requirements upgraded                                                                                                                                                                     |
| Version 3 | Jul 11, 2008  | -                   | - Change to dual brand datasheet that describe RT0402 to RT2512 with RoHS compliant                                                                                                              |
|           |               |                     | - Description of "Halogen Free Epoxy" added                                                                                                                                                      |
|           |               |                     | - Define global part number                                                                                                                                                                      |
|           |               |                     | - Modify electrical characteristic                                                                                                                                                               |
| Version 2 | Dec 26, 2005  | -                   | - New datasheet for thin film high precision - high stability chip resistors sizes of 0201/0402/0603/0805/1206/1210/2010/2512, 1%, 0.5%, 0.25%, 0.1%, 0.05%, TC25/50 with lead-free terminations |
|           |               |                     | - Replace the 0402 to 1210 parts of pdf files: TFx10_1_1, TFx115_2, TFx1225_2, TFx131_3, TFx1405_1, TFx20_1_2, TFx215_2, TFx2225_2, TFx231_2, TFx2405_1, and combine into a document.            |
|           |               |                     | - Test method and procedure updated                                                                                                                                                              |
|           |               |                     | - PE tape added (paper tape will be replaced by PE tape)                                                                                                                                         |

<sup>&</sup>quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

### Vitrohm:

RT0603BRD07820KL

## Yageo:

RT0402DRE07430RL RT0603CRE0714K7L RT0603CRE0715K8L RT0603CRE072K26L RT0603BRE0746K4L RT0603BRE0759RL RT0603BRE0780K6L RT0603CRD071K2L RT0603CRD073K16L RT0603CRD0756RL RT0603CRD07680RL RT0603CRE0710K7L RT0603CRD073K65L RT0603BRE076K65L RT0603BRE07300RL RT0603BRE073K16L RT0402BRE07910RL RT0603BRE075K49L RT0603CRD07196RL RT0603BRE07453RL RT0603BRE0747R5L RT0603BRE07432RL RT0603BRE0745K3L RT0603BRE074K22L RT0603BRE074K42L RT0402BRE07634RL RT0402BRE078K66L RT0603BRE0734K8L RT0603BRE07357RL RT0603BRE073K6L RT0402BRE0797K6L RT0603CRD078K25L RT0402CRD07120RL RT0402CRD07150RL RT0402BRE0780R6L RT0603BRE073K83L RT0603CRD0722KL RT0603CRE07220KL RT0402CRD07180RL RT0603CRD07174RL RT0603CRE07300KL RT0402BRE0790K9L RT0603BRE0757R6L RT0603BRE076K49L RT0603BRE0782KL RT0603BRE0790R9L RT0603BRE0791RL RT0603CRD07118RL RT0603BRE0735K7L RT0603BRE0737R4L RT0603BRE0738K3L RT0603BRE0740R2L RT0603BRE07470RL RT0603BRE0754K9L RT0402CRD0715KL RT0402BRE0761R9L RT0603BRE07365RL RT0402BRE0768R1L RT0402BRE0754R9L RT0603BRE072K8L RT0603CRD074K7L RT0603CRE0721K5L RT0603CRE074K75L RT0603CRE0771R5L RT0603CRD073K3L RT0402CRD07100RL RT0402BRE0768KL RT0402BRE0769R8L RT0402BRE07787RL RT0603WRB0733KL RT0603WRB073K9L RT0603CRD0727KL RT0603BRE072K1L RT0402BRE076K49L RT0603BRE07732RL RT0603BRE07787RL RT0603BRE077K87L RT0603BRE0739R2L RT0603CRD0711K5L RT0603BRE076K04L RT0603BRE078K45L RT0402BRE0791KL RT0402BRE079K53L RT0402BRE074K02L RT0603BRE07887RL RT0603BRE079K76L RT0603BRE0760K4L RT0603BRE0768R1L RT0603BRE0797K6L RT0603BRE079K53L RT0603BRE07590RL RT0402BRE07953RL RT0402CRD0712KL RT0402CRD0718KL RT0603BRE079K31L RT0603CRD07200KL RT0603BRE0778K7L RT0402BRE074K42L RT0402BRE0763K4L