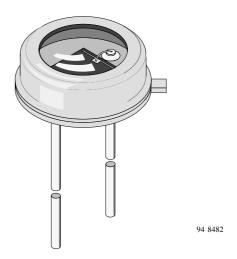


Silicon PN Photodiode


Description

BPW20RF is a planar Silicon PN photodiode in a hermetically sealed short TO–5 case, especially designed for high precision linear applications.

Due to its extremely high dark resistance, the short circuit photocurrent is linear over seven decades of illumination level.

On the other hand, there is a strictly logarithmic correlation between open circuit voltage and illumination over the same range.

Equipped with a clear, flat glass window, the spectral responsitivity reaches from blue to near infrared.

Features

- Hermetically sealed TO-5 case
- Flat glass window
- Cathode connected to case
- Wide viewing angle $\varphi = \pm 50^{\circ}$
- Large radiant sensitive area (A=7.5 mm²)
- Suitable for visible and near infrared radiation
- High sensitivity
- UV enhanced
- Low dark current
- High shunt resistance
- Excellent linearity
- For photodiode and photovoltaic cell operation

Applications

 Sensor for light measuring techniques in cameras, photometers, color analyzers, exposure meters (e.g. solariums) and other medical and industrial measuring and control applications.

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V_{R}	10	V
Power Dissipation	T _{amb} ≤ 50 °C	P_V	300	mW
Junction Temperature		Tj	125	°C
Operating Temperature Range		T _{amb}	<i>–</i> 55+125	°C
Storage Temperature Range		T _{stg}	<i>–</i> 55+125	°C
Soldering Temperature	t ≦ 5 s	T_{sd}	260	°C
Thermal Resistance Junction/Ambient		R_{thJA}	250	K/W

1 (5)

BPW20RF

Vishay Semiconductors

Basic Characteristics (T_{amb} = 25°C)

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Forward Voltage	$I_F = 50 \text{ mA}$	V_{F}		1.0	1.3	V
Breakdown Voltage	$I_R = 20 \mu A, E = 0$	V _(BR)	10			V
Reverse Dark Current	$V_R = 5 V, E = 0$	I _{ro}		2	30	nA
Diode Capacitance	$V_R = 0 V, f = 1 MHz, E = 0$	C_D		1.2		nF
	$V_R = 5 V, f = 1 MHz, E = 0$	C_D		400		pF
Dark Resistance	V _R = 10 mV	R_D		38		$G\Omega$
Open Circuit Voltage	E _A = 1 klx	Vo	330	500		mV
Temp. Coefficient of Vo	$E_A = 1 \text{ klx}$	TK _{Vo}		-2		mV/K
Short Circuit Current	$E_A = 1 \text{ klx}$	I _k	20	60		μΑ
Temp. Coefficient of I _k	$E_A = 1 \text{ klx}$	TK _{lk}		0.1		%/K
Reverse Light Current	$E_A = 1 \text{ klx}, V_R = 5 \text{ V}$	I _{ra}	20	60		μΑ
	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}, V_R = 5 \text{ V}$	I _{ra}		42		μΑ
Angle of Half Sensitivity		φ		±50		deg
Wavelength of Peak Sensitivity		λ_{p}		920		nm
Range of Spectral Bandwidth		λ _{0.5}		5501040		nm
Rise Time	$V_R = 0 \text{ V}, R_L = 1 \text{k } \Omega,$ $\lambda = 820 \text{ nm}$	t _r		3.4		μs
Fall Time	$V_R = 0 \text{ V}, R_L = 1 \text{k } \Omega,$ $\lambda = 820 \text{ nm}$	t _f		3.7		μs

Typical Characteristics (T_{amb} = 25°C, unless otherwise specified)

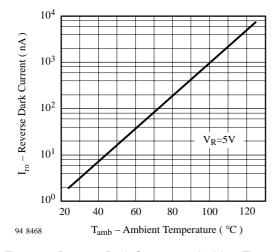


Figure 1. Reverse Dark Current vs. Ambient Temperature

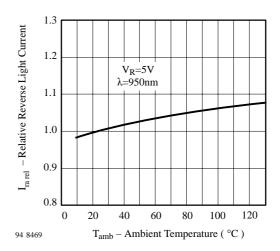


Figure 2. Relative Reverse Light Current vs. Ambient Temperature

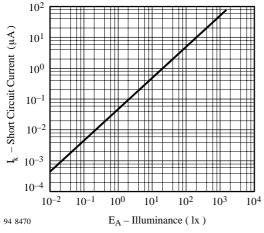


Figure 3. Short Circuit Current vs. Illuminance

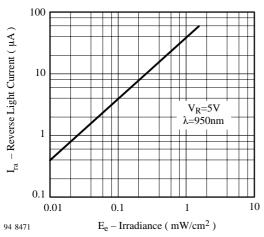


Figure 4. Reverse Light Current vs. Irradiance

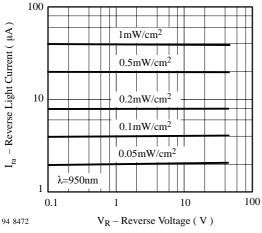


Figure 5. Reverse Light Current vs. Reverse Voltage

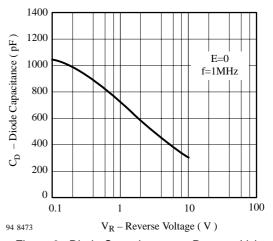


Figure 6. Diode Capacitance vs. Reverse Voltage

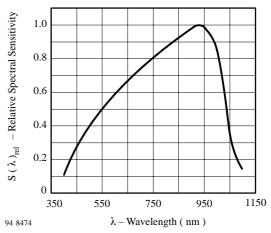


Figure 7. Relative Spectral Sensitivity vs. Wavelength

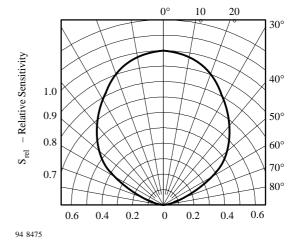
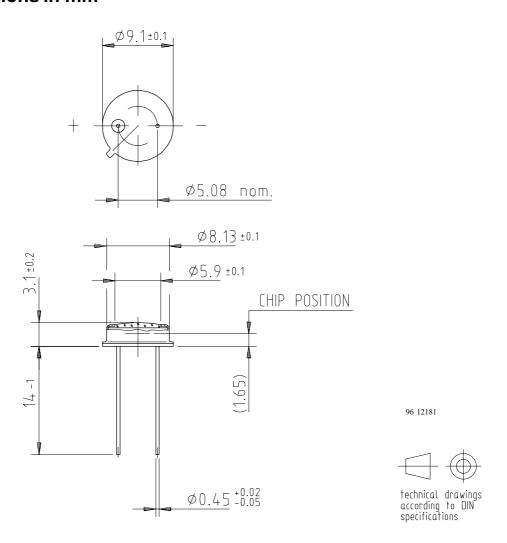



Figure 8. Relative Radiant Sensitivity vs. Angular Displacement

VISHAY

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 81570 www.vishay.com
Rev. 1, 19–Mar–02 5 (5)